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Abstract
The fractional-dimensional space approach (FDSA) is used to analyse the
temperature dependence of direct interband transitions in Si. The critical point
(CP) parameters are obtained. The results obtained by the FDSA show general
or even better agreement with the theoretical calculation than the standard
treatment. In the temperature range of 20–450 ◦C, the results obtained by
FDSA indicate that the excitonic effects can be ignored, and the CP E1 − E ′

0
can be treated as a band character. Our research shows that the FDSA provides
a good way to derive basic information on relevant physical quantities from
the observed optical spectra, and it has the advantages of directness, flexibility,
and sensitivity, which enable us to obtain the CP parameters efficiently without
ambiguity. This method is especially useful in the cases where the limitations
of the standard treatment are serious.

1. Introduction

The analysis of optical spectra provides rich information about the physical properties of
materials. The dielectric function, which expresses the optical responses of materials under
an external field, has been widely used for this purpose.

The structure observed in the dielectric function spectrum, which is attributed to interband
critical point (CP) transitions, can be analysed in terms of the following line shape of an integer-
dimensional model [1, 2]:

ε(E) = C − Aei�(E − Eg + i�)n/2−1 (1)
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where the CP is described by the threshold energy Eg, broadening �, amplitude A, and the
excitonic phase angle �. The parameter n is the dimensionality of this CP, which is an integer
between 0 and 3. The above analytic expression provides the well-known standard treatment
for analysing a critical point transition. Other typical analytic line shapes for optical spectra
can be obtained from the harmonic-oscillator model [3] and more extended versions thereof
[4–6].

The above methods have been widely used in the CP analysis from optical spectra.
However, they have some limitations. First, in order to extract all the CP parameters, a
model line shape must be assumed with regard to a chosen segment of the spectrum which
contains the structure of interest. The need to assume a model line shape in advance
remains a fundamental limitation because the line shape may actually be different from
that of the model employed [7]. Sometimes, an inappropriate assumption may even lead
to mistaken results [8, 9]. Secondly, the second or third derivative of a spectrum is generally
employed to enhance a CP structure. However, differentiation also enhances noise, and the
smoothing technique needed thereafter may distort the informational content of the data [7].
Thirdly, all the CP parameters are determined by minimizing the mean square deviation
between the model line shape and the spectral segment. In the standard treatment, when
the actual dimensionality of a CP is fractional, e.g. 1.5, both 1D and 2D models may show
comparable fitting results by least-squares regression. In such a case, it is difficult to decide
which model is more reasonable, let alone to find appropriate model-dependent parameters.
Faced with these difficulties, some authors even present fitting results of different models
without making a decision [10, 11].

Lately the fractional-dimensional space approach [12–16] (FDSA) has been acknowledged
as a powerful tool to deal with intermediate-dimensional, namely fractional-dimensional,
cases. In the past decade, this method has been successfully used in modelling exciton and the
absorption spectra in semiconductor quantum wells, quantum well wires and superlattices [17–
22]. This technique has also been used to study biexcitons [23–25], exciton–phonon
interactions [26], the Stark shift of excitonic complexes [27], the refractive index [28], impurity
states [29–31], the Pauli blocking effect [32], and the polaron effect [33] in quantum wells.
This approach works by treating an anisotropic interaction in a three-dimensional space as an
effective isotropic one in a lower-order space of fractional dimension α. The value of α is
determined by the degree of the anisotropy, reflecting the mean confinement that an excitation
‘feels’ in the actual physical system.

We have also used the FDSA to study direct interband transitions in SiGe alloys [36].
Because of the advantages of directness, flexibility, and sensitivity in FDSA, we discovered
a weak structure at the edge of the optical spectrum and a residual oxide overlayer
effect.

In this paper, we apply the FDSA to the temperature dependence of interband critical points
in silicon. The results are compared with those obtained by the standard treatment [34] and by
microscopic calculations [11, 35] based on electron–photon and electron–phonon interaction.
Our result of CP energies is in general agreement with those in the literature. With regard to
lifetime broadening, better agreement with the theoretical calculation is obtained. It is shown
that in the temperature range 20–450 ◦C, the excitonic effects can be ignored for Si, and the
CP E1 − E ′

0 can be treated as a band character above room temperature, which is contrary to
a popular viewpoint of the excitonic character of E1. Direct evidence is also given that the CP
E2 is a much stronger structure than E1 − E ′

0.
This paper is organized as follows. In section 2, we give a brief description of the FDSA

in direct interband transitions. In section 3 we show the results of our investigation on the
temperature dependence of critical points in Si, and discuss them.
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2. The fractional-dimensional space approach in direct interband transitions

By applying the fractional-dimensional space model to the optical transitions near a critical
point, He and Mo have introduced the following analysis forms for treating the interband
transitions [13–15]:

ε(E) = ir−α�(2 − α/2)Mα

E2

∫ E−Eg+i�

tα/2−2 dt, (2)

where the symbols have the same meaning as in equation (1). In addition, r is the type
of the CP, which is equal to the number of negative principal components of the mass
tensor [1], α is the dimensionality (usually fractional) of the CP, and Mα = 2|〈v|a ·
p|c〉|2(e/m)2(mvc/2π)α/2h̄2−α/ε0. Since the Lorentzian broadening has been proved to be
good enough in temperature-dependent studies of a number of semiconductors including
Si [34, 37, 38], we also adopt it in this work.

Note that the above expression is equivalent to equation (1) when α is the integer n. So
the FDSA can be thought of as evolving from the standard treatment to include the fractional-
dimensional cases. After differentiating equation (1) to an order of α/2 with respect to
E [15, 39], and considering different types of CP, we find equation (2) gives, when r is
even, ∣∣∣∣ dα/2

dEα/2
(E2ε1)

∣∣∣∣ = Mα

|Eg − E |
(Eg − E)2 + �2

= f1, (3)

∣∣∣∣ dα/2

dEα/2
(E2ε2)

∣∣∣∣ = Mα

�

(Eg − E)2 + �2
= f2; (4)

and when r is odd,∣∣∣∣ dα/2

dEα/2
(E2ε1)

∣∣∣∣ = f2, (5)

∣∣∣∣ dα/2

dEα/2
(E2ε2)

∣∣∣∣ = f1. (6)

We present figure 1 to demonstrate the meaning of equations (3)–(6). Generally speaking,
when the differentiation order is half the dimensionality of a CP, the corresponding segment in
the derivative spectrum of the dielectric functions becomes Lorentzian line shaped, as shown
in figure 1. The maximum of f2 corresponds to the symmetric centre Eg and the amplitude
Am. When E is equal to Eg plus or minus �, f2 intersects with f1, and reaches half-height of
the peak (Am/2). The zero point of f1 also corresponds to the symmetry centre Eg. Thus this
figure allows us to directly extract all the CP parameters, avoiding complex calculations. The
procedure for applying the fractional-dimensional space approach is described in the following
section.

3. Result and discussion

We employ the fractional-dimensional space approach (FDSA) to investigate the temperature
dependence of the critical point parameters of Si between 20 and 450 ◦C in the photon energy
range from 1.5 to 4.7 eV. The database is from [40].

In order to make clear our procedure of applying the FDSA, the specific case of Si at
20 ◦C may serve as a helpful example. Our first step is to differentiate numerically [15, 39]
both (E2ε1) and (E2ε2) of Si at 20 ◦C to an order of x with respect to the photon energy E ,
where x is increased quasi-continually from 0 to 3/2, noting that a dimensionality less than
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Figure 1. The Lorentzian line shape in the derivative spectra, with a differentiation order of half
the dimensionality of the critical point.

Figure 2. (a) The original spectrum of E2ε(E) of Si at 20 ◦C. (b) Its derivative spectrum under
the differentiation order of 0.77. (c) Its derivative spectrum under the differentiation order of 0.89.

zero or greater than three has no physical meaning. The results of using different values of
x are plotted in their own respective figures. Figure 2(a) is the original spectrum of |E2ε|
of Si at 20 ◦C, which can actually be treated as the zero-order derivative. As we increase
the differentiation order x , the line shapes near a critical point are asymmetric at first, then
become symmetric and then asymmetric again (but in the opposite direction) until they finally
deteriorate. So it is easy to find out the symmetric profile as in figure 1 from this process.
For instance, figure 2(b) shows a Lorentzian line shape structure between 3 and 3.5 eV, which
is identified as the CP E1 − E ′

0 [34, 35, 38], and figure 2(c) displays another CP structure
E2 [34, 35, 38] between 4.0 and 4.5 eV. (It might be noticed that there is some abnormality
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Figure 3. The temperature dependence of the dimension of the critical points for Si.

Figure 4. The temperature dependence of the interband critical point energies of Si.

in the right-hand shoulder of the CP E2, which we will explain later in section 3.2.) Then
all the transition parameters can be obtained from figure 2(b) for the CP E1 − E ′

0 and from
figure 2(c) for the CP E2. The dimensionality of the respective CPs is twice the differentiation
order of the corresponding figure. The symmetric centre corresponds to the threshold energy
Eg. The lifetime broadening � is the half-width at half-height. The height of the peak is the
amplitude Am, and the interband momentum matrix element related parameter, Mα, equals
Am multiplied by the broadening parameter �. All our results for the CPs E1 − E ′

0 and E2 in
Si are plotted in figures 3–6.

Generally speaking, the dimensionality of a CP represents the degree of the average
anisotropic electron–lattice interactions during the CP transitions. It is the intrinsic property of
the physical interactions. So there should, in principle, exist only one fractional dimensionality
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Figure 5. (a) The temperature dependence of the broadenings of the critical point E1 − E ′
0 for

Si. Our present work (solid squares) obtained by the FDSA is compared to two different models
(the excitonic (circles) and the mixture (triangles) models) in the standard treatment and theoretical
calculations. (b) The temperature dependence of the broadenings of the critical point E2 for Si.
Our present work (solid squares) obtained by the FDSA is compared to two different models (1D
(triangles) and 2D (circles) models) in the standard treatment and theoretical calculations.

to give a symmetric differentiated spectrum for each critical point. We can also understand
this point from the physical image of the FDSA and the above application procedure. On the
one hand, as can be seen from equations (3) to (6), the right-hand side of the equations ( f1

or f2) has specific values for each critical point; on the other hand, the left-hand side (the
derivative spectrum of dielectric functions) changes irreproducibly with the differentiation
order (also shown in figure 2). As a result, there is only one order of differentiation (half the
dimensionality) for the solution.

In early work some researchers simply assigned the peak structures of the real or imaginary
part of a dielectric function to an expected critical point [41]. Later work showed that this is
not necessarily true. It was realized that in neither ε1 nor ε2 does the maximum correspond
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Figure 6. The temperature dependence of the interband momentum matrix related parameter Mα,
defined in equation (2), measured for the CPs of Si.

to the real value of the CP energy for a nonsymmetric structure [34]. This conclusion is very
natural from the viewpoint of the FDSA. In the case where the dimensionality of a CP is zero,
the structure in the dielectric spectrum is symmetric, and its maximum does correspond to the
CP energy [42]; however, in a more general case where the dimensionality of a CP is not zero,
the structure in the original dielectric spectrum is not symmetric, and the FDSA is needed to
transfer it into a symmetric one, whose maximum then corresponds to the CP energy.

It might be argued that due to the influence of other nearby CPs and noise, the actual
symmetric structures shown in figure 2 are not as perfect as the ideal one shown in figure 1.
In fact, the standard treatment and the other line shape fitting methods also suffer from this
interference. However, it can be reduced to a large extent by the FDSA. First, the differentiation
order is half the dimensionality of this CP, thus it enhances the CP structure of interest and
depresses others with different dimensionality. Second, all CP parameters are determined
within a comparatively small energy range from (Eg − �) to (Eg + �), where the character
of the oscillator is prominent and less influenced by other critical points, as seen in figures 1
and 2. Our research presented in this work as well as another on the compositional dependence
of Si1−x Gex [36] show that the results obtained by the FDSA are in reasonable agreement with
the literature, yet remain free from tedious calculations.

3.1. The critical point E1 − E ′
0

The structure observed between 3.0 and 3.5 eV in the spectra (e.g., figure 2(b)) is attributed to
two kinds of transition [34]. The first is the E1 transitions taking place along the � directions
of the Brillouin zone (BZ), and the second is the lowest direct energy gap located at the �

point, which is labelled E ′
0. The CPs E1 and E ′

0 are almost degenerate and can be resolved at
lower temperatures below 280 K [11]. In our research they appear as one structure from 20 to
450 ◦C.

It is well known that electrons endure forces introduced by the lattice in a CP transition,
and the anisotropic electron–lattice interactions result in restricted,confined non-3D dynamical
behaviours even in bulk material, like Si in this research. The dimensionality of a CP
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characterizes the average confinement an electron experiences during the CP transitions.
Figure 3 thus describes how the average confinement is affected by temperature in Si. Due
to the different symmetry of corresponding points in k space for different CPs, it is not
surprising that the dimensionalities of different CPs are not necessarily the same, and may
change unexpectedly with temperature. As can be seen from figure 3, the dimensionality of
the CP E1 − E ′

0 is very different from that of the CP E2. We can also see from figure 3 that, as
the confinement for the CP E1 − E ′

0 weakens with increasing temperature, the dimensionality
increases slightly from 1.5 to 2. It is not new that the dimension of a CP can increase with
temperature. GaAs, for example, was reported to display an excitonic character (0D) up to
300 K but a band character (2D) at higher temperature [37]. Unfortunately, in the standard
treatment, because only integer-dimensional models are available, the dimensionality of the
CP has to jump from 0 to 2 at some turning point (such as 300 K) in the case of GaAs. This
limitation is avoided by the FDSA, thanks to the flexibility of the fractional dimensionality.
Moreover, like the other CP parameters, the dimensionality is not an input parameter but an
output one determined directly from the optical spectrum,so it can sensitively reflect the change
of band structures with temperature. We note that the values (1.5–2) are quite different from
the excitonic model (0) used in [34] for the CP E1 − E ′

0. We will return to this point later.
A comparison between our results on the temperature shift of the E1 − E ′

0 gap and those
of [34] is shown in figure 4. Our results obtained by the FDSA are plotted with solid squares.
The results of [34], obtained by the standard treatment, are plotted with circles. We can see
that the agreement is reasonable, and the maximum deviation is less than 0.81% for the CP
E1 − E ′

0. Moreover, we can also see good agreement for the CP E2. Since both our results
and the ones from [34] have overlapping margins of error and can therefore be considered
virtually the same, we do not discuss their comparison with the theoretical calculation [35]
here. Interested readers can refer to [34] and [35].

With regard to the lifetime broadenings �1, figure 5(a) shows the comparison of our result
obtained by the FDSA with those obtained by different integer-dimensional models in the
standard treatment [11, 34], and those obtained by theoretical calculation [11]. It is obvious
that our result is in good agreement with the one obtained by the model considering a mixture
line shape of 2D and excitonic, noting the contribution from E ′

0 and E1 [11]. The broadenings
of both results are basically between the theoretical E ′

0 and E1 curves, and they are much closer
to the theoretical E1 curve. The agreement is sound, as it is already known that the contribution
of E1 is dominant in the combined transitions [11, 34]. However, the broadenings obtained
from the pure excitonic model [34], which are represented by the circle symbols in figure 5(a),
seem 1.5–2 times bigger than the above results. Such a large discrepancy from the theoretical
result is unlikely to be attributed to the electron–electron interaction and surface scattering
indicated by [34]. It is known that the lifetime broadening parameter is dependent on the
dimensional models used in the standard treatment [10, 34]. Generally speaking, the smaller
the dimensionality of a model, the bigger the lifetime broadening. So it is not surprising that
the excitonic model yields substantially greater broadening than the mixture model of 2D and
0D, as demonstrated in figure 5(a). Moreover, it was found recently that a pure excitonic line
shape was not suitable for describing the dielectric behaviour near the CP E1 − E ′

0 of Si [38].
Instead, Aoki and Adachi [38] also employed a 2D model combining excitonic effects at low
temperatures, which greatly improved the fit of the dielectric function of Si in the temperature
range 30–793 K.

The theoretical calculations shown in figure 5 are based on a phonon-induced broadenings
mechanism [11]. In such a mechanism, temperature dependence of lifetime broadenings is
caused by the electron–phonon interaction, which shortens the lifetime of electronic states
and thus increases the lifetime broadening with increasing temperature. Since the agreements
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between our results obtained by the FDSA and the theoretical calculations based on electron–
phonon interaction are quite satisfying, no other interaction is artificially needed to explain the
broadening phenomena.

Furthermore, Lautenschlager et al [34] have investigated the character of E1 transitions in
semiconductors (IV) and compounds (III–V, II–VI). Their results are given in table 3 of [34].
The regularity they found is that the higher the high-frequency dielectric constant (ε(∞)), the
less the localized character. However, it should be noticed that the regularity is systematic
except for Si. In the excitonic area of the table, all the constants (ε(∞)) are basically less than
10, while the ε(∞) of Si is 12, which is apparently greater than 9.6 (InP) and 10.9 (GaAs) in
the 2D area. If we treat E1 in Si not as a pure excitonic but as a band characteristic critical
point, the regularity of the table appears more reasonable and satisfying.

Although excitonic effects were introduced to overcome the difficulties of the
underestimated intensity of E1 in ab initio calculations [43, 44], our results obtained from
experimental data, combined with Adachi’s work [38], seem to indicate that in the temperature
range of 20–450 ◦C the excitonic effects can be ignored, and the simple model of the FDSA
in our paper, which is within the framework of the one-electron approximation, provides a
good description of band character for the CP E1 − E ′

0 in Si. However, when the temperature
becomes very low, the contribution of the excitonic effects must be considered in the FDSA
model to give a proper explanation for the spectral change [5, 38].

3.2. The critical point E2 transitions

The higher energy critical point between 4.0 and 4.5 eV in figure 2(c) is labelled E2 [34], and
is attributed to several transitions in the band. Their origins in the Brillouin zone (BZ) are
not well defined, and they are usually attributed to the area including or near the X and �

points in k space [34, 38]. This indicates that the small abnormality in the right-hand shoulder
of the symmetric structure for E2 in figure 2(c) is caused by the superposition of close CPs
with different dimensionality, amplitude and broadenings. However, as an approximation, we
ignore this abnormality and treat them as one structure; the results are still satisfying and agree
well with both the analysis results of the experiment in [34] and the theoretical calculus of [35].

The temperature dependence of the dimensionality of the CP E2 is also demonstrated in
figure 3. It is clear that in the temperature range 20–450 ◦C the dimensionality of the CP E2

is between 1.7 and 1.9, which can be reasonably simplified as a 2D model in the standard
treatment [34].

As indicated by figure 4, the temperature dependence of the E2 energy gap agrees well
with [34], and the deviation is less than 0.2%. For the reason mentioned in section 3.1, we do
not discuss it further.

Figure 5(b) shows the temperature dependence of the lifetime broadening for the CP E2.
From this figure we can see that our result agrees with that obtained by the 2D model [34], but
is much lower than that of the 1D model [11]. This is reasonable. Since the dimensionality for
the CP E2 is between 1.7 and 1.9, the 2D model is a good approximation, while the 1D model
clearly yields much larger �. As for the comparison of experimental results with theoretical
ones, there is still a discrepancy (figure 5(b)). This is because the origin of the E2 structure
in the optical spectra is not well-defined in the BZ, as mentioned above. It is attributed to
transitions in several regions, while the theoretical curve plotted in figure 5(b) only concerns
transitions at the point (2π/a0) (0.9, 0.1, 0.1) [11]. In addition, the local pseudopotential band
structure for theoretical calculus underestimates the E2 CP energies by about 10%, which
leads to a lower electronic density of states and as a result comparatively lower values for the
broadening parameters.
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The parameter Mα, which is proportional to |〈v|a·p|c〉|2, can be obtained from the equality
Mα = Am × �. We plot this parameter as a function of temperature in figure 6. It is almost
independent of temperature, which suggests that the band structure does not undergo a notable
change in the temperature range 20–450 ◦C. This figure also shows that the values of Mα for
E2 are much larger than those for E1 − E ′

0, which provides direct evidence that the CP E2 is
a much stronger structure than the CP E1 − E ′

0 [34].

4. Conclusion

The temperature dependence of the dielectric function of Si was analysed in the 1.5–4.7 eV
photon energy range from 20 to 450 ◦C. By performing the FDSA on the observed structures,
the parameters (dimensionality, threshold energy and lifetime broadening) of the critical points
E1 − E ′

0 and E2 were obtained. These results are compared with those obtained by the standard
treatment and theoretical calculations. With regard to energy shift, good agreement is achieved.
The broadening obtained by the FDSA agrees better with the theoretical calculation. Our results
show that in the temperature range 20–450 ◦C, the excitonic effects can be ignored and the
CP E1 − E ′

0 can be described by a band character. Direct evidence is provided that E2 is a
stronger structure than E1 − E ′

0.
Our research including this work and another on SiGe alloys [36] demonstrates that the

FDSA can avoid the limitations within the previous methods mentioned in section 1. First,
the FDSA can be used to obtain all the CP parameters directly from the optical spectrum
without tedious calculation. No assumption or adjustable parameter is needed. Second, the
order of differentiation in the FDSA is no greater than 3/2, which is much smaller than the
differentiation order of 2 or 3 generally required by the standard treatment, thus reducing the
need for smoothing techniques; this preserves the integrity of the experimental data. Third, the
FDSA is flexible enough to deal with any integer- or fractional-dimensional critical points with
one unified model. Moreover, since all the CP parameters are not adjustable parameters but
are extracted directly from the optical spectrum, they are as sensitive as the optical spectrum
itself, reflecting small changes in the band structure due to composition, temperature, stress
or other conditions. Because of all these advantages, we anticipate that the FDSA can be
generally applied to other semiconductors for CP analysis in the optical spectrum, especially
in the cases where the limitations of the previous methods are serious.
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